Fast amortized inference of neural activity from calcium imaging data with variational autoencoders

نویسندگان

  • Artur Speiser
  • Jinyao Yan
  • Evan Archer
  • Lars Buesing
  • Srinivas C. Turaga
  • Jakob H. Macke
چکیده

Calcium imaging permits optical measurement of neural activity. Since intracellular calcium concentration is an indirect measurement of neural activity, computational tools are necessary to infer the true underlying spiking activity from fluorescence measurements. Bayesian model inversion can be used to solve this problem, but typically requires either computationally expensive MCMC sampling, or faster but approximate maximum-a-posteriori optimization. Here, we introduce a flexible algorithmic framework for fast, efficient and accurate extraction of neural spikes from imaging data. Using the framework of variational autoencoders, we propose to amortize inference by training a deep neural network to perform model inversion efficiently. The recognition network is trained to produce samples from the posterior distribution over spike trains. Once trained, performing inference amounts to a fast single forward pass through the network, without the need for iterative optimization or sampling. We show that amortization can be applied flexibly to a wide range of nonlinear generative models and significantly improves upon the state of the art in computation time, while achieving competitive accuracy. Our framework is also able to represent posterior distributions over spike-trains. We demonstrate the generality of our method by proposing the first probabilistic approach for separating backpropagating action potentials from putative synaptic inputs in calcium imaging of dendritic spines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Amortized Variational Autoencoders

Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational par...

متن کامل

Inference Suboptimality in Variational Autoencoders

Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of t...

متن کامل

Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit

Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have devel...

متن کامل

InfoVAE: Information Maximizing Variational Autoencoders

It has been previously observed that variational autoencoders tend to ignore the latent code when combined with a decoding distribution that is too flexible. This undermines the purpose of unsupervised representation learning. In this paper, we additionally show that existing training criteria can lead to extremely poor amortized inference distributions and overestimation of the posterior varia...

متن کامل

Deep Variational Inference Without Pixel-Wise Reconstruction

Variational autoencoders (VAEs), that are built upon deep neural networks have emerged as popular generative models in computer vision. Most of the work towards improving variational autoencoders has focused mainly on making the approximations to the posterior flexible and accurate, leading to tremendous progress. However, there have been limited efforts to replace pixel-wise reconstruction, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017